
AladdinDAO
Security Assessment

April 17th, 2021

For :
AladdinDAO Protocol

 Disclaimer

CertiK reports are not, nor should be considered, an “endorsement” or “disapproval” of any particular project or team.
These reports are not, nor should be considered, an indication of the economics or value of any “product” or “asset”
created by any team or project that contracts CertiK to perform a security review.

CertiK Reports do not provide any warranty or guarantee regarding the absolute bug-free nature of the technology
analyzed, nor do they provide any indication of the technologies proprietors, business, business model or legal
compliance.

CertiK Reports should not be used in any way to make decisions around investment or involvement with any particular
project. These reports in no way provide investment advice, nor should be leveraged as investment advice of any sort.

CertiK Reports represent an extensive auditing process intending to help our customers increase the quality of their code
while reducing the high level of risk presented by cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s position is that each
company and individual are responsible for their own due diligence and continuous security. CertiK’s goal is to help reduce
the attack vectors and the high level of variance associated with utilizing new and consistently changing technologies, and
in no way claims any guarantee of security or functionality of the technology we agree to analyze.

What is a CertiK report?

A document describing in detail an in depth analysis of a particular piece(s) of source code provided to CertiK by a
Client.
An organized collection of testing results, analysis and inferences made about the structure, implementation and
overall best practices of a particular piece of source code.
Representation that a Client of CertiK has indeed completed a round of auditing with the intention to increase the
quality of the company/product’s IT infrastructure and or source code.

Project Name AladdinDAO

Description Decentralized Finance Protocol

Platform Ethereum; Solidity; Yul

Codebase GitHub Repository

Commits 2a84dbdb3fc75b1ef75f7232f83e0e32cf9c3652

Delivery Date April. 17th, 2021

Method of Audit Static Analysis, Manual Review

Consultants Engaged 2

Timeline Mar. 28, 2021 - April. 17, 2021

 Total Issues 9

 Total Critical 0

 Total Major 1

 Total Minor 1

 Total Informational 7

 Total Discussion 0

 Overview

Project Summary

Audit Summary

Vulnerability Summary

https://github.com/AladdinDAO/aladdin-core/tree/2a84dbdb3fc75b1ef75f7232f83e0e32cf9c3652
https://github.com/AladdinDAO/aladdin-core/commit/2a84dbdb3fc75b1ef75f7232f83e0e32cf9c3652
https://github.com/AladdinDAO/aladdin-core/commit/2a84dbdb3fc75b1ef75f7232f83e0e32cf9c3652

 Executive Summary

This report has been prepared for AladdinDAO smart contract to discover issues and vulnerabilities in the source code of
their Smart Contract as well as any contract dependencies that were not part of an officially recognized library. A
comprehensive examination has been performed, utilizing Dynamic Analysis, Static Analysis, and Manual Review
techniques.

The auditing process pays special attention to the following considerations:

Testing the smart contracts against both common and uncommon attack vectors.
Assessing the codebase to ensure compliance with current best practices and industry standards.
Ensuring contract logic meets the specifications and intentions of the client.
Cross referencing contract structure and implementation against similar smart contracts produced by industry
leaders.
Thorough line-by-line manual review of the entire codebase by industry experts.

ID Contract SHA256-Checksum

DAO DAO.sol b8d914819016159ecc1ccb715a72b52c79c5ff1480362f802cb855d3bc33be00

TS Treasury.sol 160451b4e029c173c80c100a934dde733a16f8fd6f08cd037edc67f4d7e92041

VT VoteToken.sol 301981c3631eb57b5a7c14ca60fdf65bff37a9e42282fa195991afe903be40ba

BS BaseStrategy.sol 4deec1108bbc994d0fc1a5722fbf895684dab172e68fbb4ef344507f148951e7

SCD StrategyCompoundDAI.sol ffa356d34cb6e0a52554a7d4792b6fbddbf96ccb3ce8031c79de5a217995f571

SCUC StrategyCompoundUSDC.sol edafa70ac8de7e0609f1f56783717c1f8371399afeed89d915014bee0668a245

SCUT StrategyCompoundUSDT.sol 4fb702e278dec9f2b95793ad6a53524bded85b875929e4b84fe7f91729bec1ca

SCWC StrategyCompoundWBTC.sol 3f824262ec4c2dbeb4eaae97f101d5541b43f3269fe4159aec61b80d58332971

SCWH StrategyCompoundWETH.sol f0a11a18a09e82d2b6bdbe91966b5f3d3193a4c63b1267ea6d7230dc6e942dfc

SCP StrategyCurve3Pool.sol caf71fa6def17542857c1989a8021e9668955bb725ed7c0c8cf955470117cd97

SCH StrategyCurveHBTC.sol 695a7696656132b5181ed540e364658fd4999eec73fd2a5693571a29a9284c15

SCR StrategyCurveRenWBTC.sol cee333c705e2e1d00d12a48a4dd3406f5a03cf3524a887572f351cc909b17f3b

SCS StrategyCurveSETH.sol e148702d06bed2f11ec752bc3b93b14ab82ce179cff880fc8256c059437e13a9

SSD StrategySushiETHDAI.sol b1d7f9829a7949b2830abf1eed46f925dc48a6a13d63d0b06cab4ff0a84b80c6

SSEC StrategySushiETHUSDC.sol f74a96b5b286a00fdb73bf06fafe2aa58a6d47e578da7ed4b2db9fc06b1b6de3

SSET StrategySushiETHUSDT.sol 4cbc24d0fd1acc23f371c4a87aeefb7d57b779a5b3e533b2ddef827ea133469c

SSEW StrategySushiETHWBTC.sol dfe92cda227c2c667baf4911cd24c9d1e009c7f6c41f11799813b30b3e5cdc4e

BV BaseVault.sol bfb599fe908dcff380e6d895dd7242202539855b5958ef347dd78bcbd64c9a97

CL Controller.sol b0e4d0ab0b8830c8d1454f87c291ba378ba3d37d03fa626d9b6f129cd31f461b

MR MultiStakingRewards.sol fcbfc6f98a0d872914354db1361d4a808796844fe0814cdb1d8a159c7f88e3ab

RD RewardDistributor.sol d61b1c0e8ff7094571307f241882f9323fac5f978a87d8251a9f660789998388

WE WrappedERC20.sol e6650b064830214793cf55d2f8f4b57da1818f66c730bedf095f116368ef247d

ALD ALDToken.sol dcc7afd20dfebfc6edfcf213ef6aa0433f96fd5be9cf12d9deb45d4e22f743c7

TD TokenDistributor.sol 3e37a7ead7117c5ed97b0953e14d0323f10433393dee2d96bc082c001ab00441

TM TokenMaster.sol 15c5c4c4e89b0c70d1b0d9aa8f54a520e9df06b1c0c0b5906e48612265941c20

 File in Scope

78%

11%

11%

Pie Chart

Informational
Major
Minor

 Findings

ID Title Type Severity Resolved

DAO-
01

Proper Usage of public And external Type Gas
Optimization Informational

VT-01 Boolean Equality Coding Style
Informational

BS-01 Improved Checks For harvest() Operation Gas
Optimization Informational

BV-01 A Possible Denial-of-Service Vulnerability In The deposit()
Function

Logical Issue Minor

BV-02 Unconditional Transfer Gas
Optimization Informational

BV-03 Unlimited Call Logical Issue Major

BV-04 Unconditional Transfer Gas
Optimization Informational

MR-
01

Data Accuracy Language
Specific Informational

TM-01 Missing Modifier Logical Issue
Informational

Type Severity Location

Gas Optimization Informational DAO.sol L112

DAO-01: Proper Usage of public And external Type

Description:

The declaration of public functions that are never called by the contract should be declared external to save gas.

For example, some functions are as follows:

 function mint(address _to, uint256 _amount) public onlyGov {
 _mint(_to, _amount);
 }

 function burn(address _from, uint256 _amount) public onlyGov {
 _burn(_from, _amount);
 }

 function takeOut(
 address _token,
 address _destination,
 uint _amount
)
 public
 onlyGov
 {
 require(_amount <= holdings(_token), "!insufficient");
 SafeERC20.safeTransfer(IERC20(_token), _destination, _amount);
 }

 function setGov(address _governance)
 public
 onlyGov
 {
 governance = _governance;
 }

 function setWant(address _want)
 public
 onlyGov
 {
 want = IERC20(_want);
 }

 function setRate(uint _rate)
 public

https://github.com/AladdinDAO/aladdin-core/blob/main/contracts/dao/DAO.sol%23L112

Similar issues have arisen with other contracts.

Recommendation:

Use the external attribute for functions never called from the same contract.

 onlyGov
 {
 rate = _rate;
 }

 function setShareCap(uint _shareCap)
 public
 onlyGov
 {
 shareCap = _shareCap;
 }

 function setAllowTransferFrom(address _addr, bool _bool)
 public
 onlyGov
 {
 allowTransferFrom[_addr] = _bool;
 }

 function setAllowTransferTo(address _addr, bool _bool)
 public
 onlyGov
 {
 allowTransferTo[_addr] = _bool;
 }

 function addToWhitelist(address _user)
 public
 onlyGov
 {

 }

 function removeFromWhitelist(address _user)
 public
 onlyGov
 {

 }

Alleviation:

The development team heeded our advice and resolved this issue in commit

bfa1fab65406d125dbfc5f57cb648fc275d6b12b

https://github.com/AladdinDAO/aladdin-core/commit/bfa1fab65406d125dbfc5f57cb648fc275d6b12b

Type Severity Location

Coding Style Informational VoteToken.sol L39 MultiStakingRewards.sol L259 RewardDistributor.sol L91

VT-01: Boolean Equality

Description:

Boolean constants can be used directly and do not need to be compare to true or false .

Recommendation:

Consider removing the equality to the boolean constant. An example revision is shown below:

Alleviation:

No alleviation.

// located on VoteToken.sol
require(isMinter[msg.sender] == true, "!minter");

// located on MultiStakingRewards.sol
require(pool.isActive == false, "Cannot withdraw active reward token");

//located on RewardDistributor.sol
require(fundManager[msg.sender] == true, "!manager");

// located on VoteToken.sol
require(isMinter[msg.sender], "!minter");

// located on MultiStakingRewards.sol
require(!pool.isActive, "Cannot withdraw active reward token");

// located on RewardDistributor.sol
require(fundManager[msg.sender], "!manager");

https://github.com/AladdinDAO/aladdin-core/blob/main/contracts/dao/VoteToken.sol%23L39
https://github.com/AladdinDAO/aladdin-core/blob/main/contracts/reward/MultiStakingRewards.sol%23L259
https://github.com/AladdinDAO/aladdin-core/blob/main/contracts/reward/RewardDistributor.sol%23L91

Type Severity Location

Gas Optimization Informational BaseStrategy.sol L94

BS-01: Improved Checks For harvest() Operation

Description:

When the user calls the harvest() function, if the variable _balance is zero, the caller is not rewarded, and gas is
consumed.

Recommendation:

Adding restrictions. An example revision is shown below:

function harvest() external {
 _claimReward();

 uint _balance = IERC20(reward).balanceOf(address(this));

 uint256 _fee = _balance.mul(performanceFee).div(max);
 IERC20(reward).safeTransfer(strategist, _fee);

 address _vault = IController(controller).vaults(address(this));
 require(_vault != address(0), "!vault"); // additional protection so we don't burn
the funds
 IERC20(reward).safeTransfer(_vault, _balance.sub(_fee));
 }

function harvest() external {
 _claimReward();

 uint _balance = IERC20(reward).balanceOf(address(this));
 require(_balance > 0, "!_balance");
 uint256 _fee = _balance.mul(performanceFee).div(max);
 if(_fee > 0){
 IERC20(reward).safeTransfer(strategist, _fee);
 }

 address _vault = IController(controller).vaults(address(this));
 require(_vault != address(0), "!vault"); // additional protection so we don't burn
the funds
 IERC20(reward).safeTransfer(_vault, _balance.sub(_fee));
 }

https://github.com/AladdinDAO/aladdin-core/blob/main/contracts/farm/strategies/BaseStrategy.sol%23L94

Alleviation:

The development team heeded our advice and resolved this issue in commit

6a9e156e4016c0053e34f6d9a37daf757ff05d2b

https://github.com/AladdinDAO/aladdin-core/commit/6a9e156e4016c0053e34f6d9a37daf757ff05d2b

Type Severity Location

Logical Issue Minor BaseVault.sol L90

 BV-01: A Possible Denial-of-Service Vulnerability In The deposit() Function

Description:

Consider the scenario: Before user first calls deposit function, Eve transfers DAI token to StrategyCompoundDAI
contract address. Subsequently, Bob uses deposit function to deposit DAI token, and the variable shares will be zero.

Recommendation:

Using totalSupply() == 0 instead of _pool == 0 . An example revision is shown below:

function balance() public view returns (uint) {
 return token.balanceOf(address(this))
 .add(IController(controller).balanceOf(address(this)));
 }
......
function deposit(uint _amount) external {

 uint _pool = balance();

 if (_pool == 0) {
 shares = _amount;
 } else {
 shares = (_amount.mul(totalSupply())).div(_pool);
 }
 _mint(msg.sender, shares);
 emit Deposit(msg.sender, _amount);
 }

function deposit(uint _amount) external {

 uint _pool = balance();

 if (totalSupply() == 0) {
 shares = _amount;
 } else {
 shares = (_amount.mul(totalSupply())).div(_pool);
 }
 _mint(msg.sender, shares);
 emit Deposit(msg.sender, _amount);
 }

https://github.com/AladdinDAO/aladdin-core/blob/main/contracts/farm/vaults/BaseVault.sol%23L90

Alleviation:

The development team heeded our advice and resolved this issue in commit

63af6f3ab94f7880807c42c1d6f45ae9fb14351c

https://github.com/AladdinDAO/aladdin-core/commit/63af6f3ab94f7880807c42c1d6f45ae9fb14351c

Type Severity Location

Coding Style Informational BaseVault.sol L155

 BV-02: Unconditional Transfer

Description:

When the variable keeperFee is zero, the safeTransfer operation is not required . If so, it will consume additional
gas.

Recommendation:

Add extra condition, an example revision is shown below:

Alleviation:

The development team heeded our advice and resolved this issue in commit

460521a40359c6e64c5f9c894dbe5b696f4019b7

function farm() public {

 uint keeperFee = _bal.mul(farmKeeperFeeMin).div(MAX);
 token.safeTransfer(msg.sender, keeperFee);

 }

function farm() public {

 uint keeperFee = _bal.mul(farmKeeperFeeMin).div(MAX);
 if(keeperFee > 0){
 token.safeTransfer(msg.sender, keeperFee);
 }

 }

https://github.com/AladdinDAO/aladdin-core/blob/main/contracts/farm/vaults/BaseVault.sol%23L155
https://github.com/AladdinDAO/aladdin-core/commit/460521a40359c6e64c5f9c894dbe5b696f4019b7

Type Severity Location

Logical Issue Major BaseVault.sol

BV-03: Unlimited Call

Description:

Considering that farm function can be called by anyone without restriction, the possibility of malicious arbitrage exists.

Alleviation:

The development team heeded our advice and resolved this issue in commit

5a949ce9a211df225d4573d9813a148c6f468af3

function farm() public {
 uint _bal = available();

 uint keeperFee = _bal.mul(farmKeeperFeeMin).div(MAX);
 token.safeTransfer(msg.sender, keeperFee);

 uint amountLessFee = _bal.sub(keeperFee);
 token.safeTransfer(controller, amountLessFee);
 IController(controller).farm(address(this), amountLessFee);

 emit Farm(msg.sender, keeperFee, amountLessFee);
 }

https://github.com/AladdinDAO/aladdin-core/blob/main/contracts/farm/vaults/BaseVault.sol%23L152
https://github.com/AladdinDAO/aladdin-core/commit/5a949ce9a211df225d4573d9813a148c6f468af3

Type Severity Location

Gas Optimization Informational BaseVault.sol L173

 BV-04: Unconditional Transfer

Description:

As in the case of BV-01 above, additional gas may be consumed here as well:

Recommendation:

Similarly, an example revision is shown below:

Alleviation:

The development team heeded our advice and resolved this issue in commit

511d50508aa3c9ce9670100ae61c22fbdefa27bb

function harvest() external onlyEOA {

 uint keeperFee = harvested.mul(harvestKeeperFeeMin).div(MAX);
 rewardToken.safeTransfer(msg.sender, keeperFee);

 }

function harvest() external onlyEOA {

 uint keeperFee = harvested.mul(harvestKeeperFeeMin).div(MAX);
 if(keeperFee > 0){
 rewardToken.safeTransfer(msg.sender, keeperFee);
 }

 }

https://github.com/AladdinDAO/aladdin-core/blob/main/contracts/farm/vaults/BaseVault.sol%23L173
https://github.com/AladdinDAO/aladdin-core/commit/511d50508aa3c9ce9670100ae61c22fbdefa27bb

Type Severity Location

Language Specific Informational MultiStakingRewards.sol L194

MR-01: Data Accuracy

Description:

When the value of balance is too small, data accuracy will be lost.

Recommendation:

Using multiplication instead of division. An example revision is shown below:

Alleviation:

This was resolved after thorough discussions with the developer team.

function notifyRewardAmount(address _rewardToken, uint256 _amount) external override
onlyRewardsDistribution updateReward(_rewardToken, address(0)) {

 require(pool.rewardRate <= balance.div(pool.rewardsDuration), "Provided reward too
high");

 }

function notifyRewardAmount(address _rewardToken, uint256 _amount) external override
onlyRewardsDistribution updateReward(_rewardToken, address(0)) {

 require(pool.rewardRate.mul(pool.rewardsDuration) <= balance, "Provided reward too
high");

 }

https://github.com/AladdinDAO/aladdin-core/blob/main/contracts/reward/MultiStakingRewards.sol%23L194

Type Severity Location

Logical Issue Informational TokenMaster.sol L288

TM-01: Missing Modifier

Description:

We need to ensure that the argument of _pid is valid.

Recommendation:

Adding modifier of onlyValidPool . An example revision is shown below:

Alleviation:

The development team heeded our advice and resolved this issue in commit

7840bdec094c7f7b68f7e64c190508b0d2993e62

 function set(uint256 _pid, uint256 _allocPoint) public onlyOwner {
 massUpdatePools();
 totalAllocPoint = totalAllocPoint.sub(poolInfo[_pid].allocPoint).add(_allocPoint);
 poolInfo[_pid].allocPoint = _allocPoint;
 }

 function set(uint256 _pid, uint256 _allocPoint) public onlyValidPool(_pid) onlyOwner {
 massUpdatePools();
 totalAllocPoint = totalAllocPoint.sub(poolInfo[_pid].allocPoint).add(_allocPoint);
 poolInfo[_pid].allocPoint = _allocPoint;
 }

https://github.com/AladdinDAO/aladdin-core/blob/main/contracts/token/TokenMaster.sol%23L288
https://github.com/AladdinDAO/aladdin-core/commit/7840bdec094c7f7b68f7e64c190508b0d2993e62

Appendix

Finding Categories

Gas Optimization

Gas Optimization findings refer to exhibits that do not affect the functionality of the code but generate different, more
optimal EVM opcodes resulting in a reduction on the total gas cost of a transaction.

Mathematical Operations

Mathematical Operation exhibits entail findings that relate to mishandling of math formulas, such as overflows, incorrect
operations etc.

Logical Issue

Logical Issue findings are exhibits that detail a fault in the logic of the linked code, such as an incorrect notion on how
block.timestamp works.

Control Flow

Control Flow findings concern the access control imposed on functions, such as owner-only functions being invoke-able
by anyone under certain circumstances.

Volatile Code

Volatile Code findings refer to segments of code that behave unexpectedly on certain edge cases that may result in a
vulnerability.

Data Flow

Data Flow findings describe faults in the way data is handled at rest and in memory, such as the result of a struct
assignment operation affecting an in-memory struct rather than an instorage one.

Language Specific

Language Specific findings are issues that would only arise within Solidity, i.e. incorrect usage of private or delete .

Coding Style

Coding Style findings usually do not affect the generated byte-code and comment on how to make the codebase more
legible and as a result easily maintainable.

Inconsistency

Inconsistency findings refer to functions that should seemingly behave similarly yet contain different code, such as a
constructor assignment imposing different require statements on the input variables than a setter function.

Magic Numbers

Magic Number findings refer to numeric literals that are expressed in the codebase in their raw format and should
otherwise be specified as constant contract variables aiding in their legibility and maintainability.

Compiler Error

Compiler Error findings refer to an error in the structure of the code that renders it impossible to compile using the
specified version of the project.

Dead Code

Code that otherwise does not affect the functionality of the codebase and can be safely omitted.

Icons explanation

 : Issue resolved

 : Issue not resolved / Acknowledged. The team will be fixing the issues in the own timeframe.

 : Issue partially resolved. Not all instances of an issue was resolved.

	 Disclaimer
	What is a CertiK report?

	 Overview
	Project Summary
	Audit Summary
	Vulnerability Summary

	 Executive Summary
	 File in Scope
	 Findings
	DAO-01: Proper Usage of public And external Type
	Description:
	Recommendation:
	Alleviation:

	VT-01: Boolean Equality
	Description:
	Recommendation:
	Alleviation:

	BS-01: Improved Checks For harvest() Operation
	Description:
	Recommendation:
	Alleviation:

	 BV-01: A Possible Denial-of-Service Vulnerability In The deposit() Function
	Description:
	Recommendation:
	Alleviation:

	 BV-02: Unconditional Transfer
	Description:
	Recommendation:
	Alleviation:

	BV-03: Unlimited Call
	Description:
	Alleviation:

	 BV-04: Unconditional Transfer
	Description:
	Recommendation:
	Alleviation:

	MR-01: Data Accuracy
	Description:
	Recommendation:
	Alleviation:

	TM-01: Missing Modifier
	Description:
	Recommendation:
	Alleviation:

	Appendix
	Finding Categories
	Icons explanation

