

Security Audit Report

Concentrator by AladdinDAO

March 31, 2022

af://n796
af://n798
af://n799
af://n806

1. Introduction

The AladdinDAO is a decentralized network to shift crypto investments from
venture capitalists to the wisdom of crowds through collective value discovery.
The Concentrator is a yield enhancement product by AladdinDAO built for
smart farmers who wish to use their Convex LP assets to farm top-tier DeFi
tokens (CRV, CVX) at the highest APY possible. SECBIT Labs conducted an audit
from February 22 to March 4, 2022, including an analysis of the smart contracts
in 3 areas: code bugs, logic flaws, and risk assessment. The assessment shows
that the Concentrator contract has no critical security risks. The SECBIT team
has some tips on logical implementation, potential risks, and code revising(see
part 4 for details).

Updated on March 31, 2022. SECBIT Labs conducted an audit for the zap feature
updates from March 23 to March 31, 2022. Issue 4.3.6 and 4.3.7 are the new
findings.

af://n808
https://github.com/AladdinDAO/aladdin-v3-contracts/pull/1

Type Description Level Status

Implementation 4.3.1 The parameter
UserInfo.shares is not
recorded and updated,
which directly results in the
user not being able to
retrieve the principal and
rewards.

Medium Fixed

Design & Implementation 4.3.2 If the function
_swapCRVToCvxCRV()
returns an incorrect value,
the harvest() function
may fail to execute.

Low Fixed

Implementation 4.3.3 The function
_claim() will duplicate
the reward when processing
aCRV token rewards.

Medium Fixed

Design & Implementation 4.3.4 It may fail for the user
to call the
depositWithCRV()
function to deposit the CRV
token.

Low Fixed

Design & Implementation 4.3.5 Potential loss of
profits in
aladdinConvexVault
contract.

Info Discussed

Implementation 4.3.6 Adding missing event
to the harvest() function
in AladdinConvexVault.

Info Fixed

Implementation 4.3.7 Using the transfer
function to send ether may
fail.

Low Fixed

2. Contract Information

This part describes the basic contract information and code structure.

2.1 Basic Information

The basic information about the Concentrator contract is shown below:

Project website

https://concentrator.aladdin.club/
Smart contract code

https://github.com/AladdinDAO/aladdin-v3-contracts
initial review commit c7751c0
final review commit 7edd109

Updated on March 31, 2022. AladdinZap feature.

initial commit b616954
final commit 5c5296e

2.2 Contract List

The following content shows the contracts included in the Concentrator, which
the SECBIT team audits:

af://n855
af://n857
https://concentrator.aladdin.club/
https://github.com/AladdinDAO/aladdin-v3-contracts
https://github.com/AladdinDAO/aladdin-v3-contracts/tree/c7751c028fa0e10b543474818207a2325413eea5
https://github.com/AladdinDAO/aladdin-v3-contracts/tree/7edd109bb5d68713bb9b27648654e351d7a8fab2
https://github.com/AladdinDAO/aladdin-v3-contracts/tree/b6169547c6ef98e7a75abe6ec2377ecd3100b266
https://github.com/AladdinDAO/aladdin-v3-contracts/tree/5c5296ee8254ac8e760cecf023014e6ec4ca0da4
af://n881

Name Lines Description

AladdinCRV.sol 259 The aCRV token issuance contract
represents the share of cvxCRV tokens
deposited in the contract.

AladdinConvexVault.sol 383 A core contract where users deposit LP
tokens and receive their earnings.

AladdinCRVZap.sol 125 A helper contract to AladdinCRV,
responsible for swapping specified tokens.

AladdinConvexVaultZap.sol 204 A helper contract to
AladdinConvexVault, responsible
for the swap of specified tokens.

Updated on March 31, 2022. The AladdinZap.sol is added for audit in zap
feature updates. It is a general zap contract for Transmuter and
AladdinCVXLocker.

https://github.com/AladdinDAO/aladdin-v3-contracts/blob/5c5296ee8254ac8e760cecf023014e6ec4ca0da4/contracts/zap/AladdinZap.sol

3. Contract Analysis

This part describes code assessment details, including two items: "role
classification" and "functional analysis".

3.1 Role Classification

There are two key roles in the Concentrator: Governance Account and Common
Account.

Governance Account

Description

Contract administrator

Authority

Update basic parameters
Add new Convex pool
Transfer ownership

Method of Authorization

The contract administrator is the contract's creator or authorized by
the transferring of the governance account.

Common Account

Description

Users participate in the Concentrator.

Authority

Stake LP token by AladdinConvexVault.
Retrieval of yield from Convex
Convex yield reinvestment

Method of Authorization

No authorization required

af://n906
af://n908

3.2 Functional Analysis

The Concentrator allows Convex liquidity providers to stake their LP tokens and
get diversified benefits. The SECBIT team conducted a detailed audit of some of
the contracts in the protocol. We can divide the critical functions of the
contract into two parts:

AladdinCRV

This contract uses the aCRV token to record the cvxCRV tokens deposited into
the contract, which will be deposited into Convex for revenue.

The main functions in AladdinCRV are as below:

deposit()

This function allows the user to deposit cvxCRV tokens stored directly
into the Convex protocol. At the same time, the recipient specified by the
user will receive the corresponding share of aCRV tokens.

depositWithCRV()

The user can call this function to deposit a specified number of CRV
tokens into the contract, convert them into cvxCRV tokens, and deposit
them in the Convex protocol.

withdraw()

The user calls this function to retrieve the deposited cvxCRV token, which
also requires the aCRV token to be burned in the appropriate amount.

harvest()

It allows anyone to call this function to retrieve the proceeds of this
contract in the Convex protocol. These proceeds will be converted into
cvxCRV tokens and deposited again in the Convex protocol.

af://n947
af://n949

AladdinConvexVault

This contract supports users to deposit LP tokens which will be deposited
under the Convex protocol. The user will be rewarded with aCRV tokens based
on the amount of LP tokens deposited.

The main functions in AladdinConvexVault are as below:

deposit()

The user calls this function to deposit the lp token.

withdrawAndClaim()

Users can withdraw some tokens from a specific pool and claim pending
rewards.

claim()

It allows users to claim pending rewards from a specific pool.

harvest()

Anyone can call this function to harvest the pending reward and convert
it to aCRV token.

af://n965

Number Classification Result

1 Normal functioning of features defined by the contract ✓

2 No obvious bug (e.g., overflow, underflow) ✓

3 Pass Solidity compiler check with no potential error ✓

4. Audit Detail

This part describes the process, and the detailed results of the audit also
demonstrate the problems and potential risks.

4.1 Audit Process

The audit strictly followed the audit specification of SECBIT Lab. We analyzed
the project from code bugs, logical implementation, and potential risks. The
process consists of four steps:

Fully analysis of contract code line by line.
Evaluation of vulnerabilities and potential risks revealed in the contract
code.
Communication on assessment and confirmation.
Audit report writing.

4.2 Audit Result

After scanning with adelaide, sf-checker, and badmsg.sender (internal version)
developed by SECBIT Labs and open source tools including Mythril, Slither,
SmartCheck, and Securify, the auditing team performed a manual assessment.
The team inspected the contract line by line, and the result could be
categorized into the following types:

af://n982
af://n984
af://n995

4 Pass common tools check with no obvious vulnerability ✓

5 No obvious gas-consuming operation ✓

6 Meet with ERC20 standard ✓

7 No risk in low-level call (call, delegatecall, callcode) and in-
line assembly

✓

8 No deprecated or outdated usage ✓

9 Explicit implementation, visibility, variable type, and
Solidity version number

✓

10 No redundant code ✓

11 No potential risk manipulated by timestamp and network
environment

✓

12 Explicit business logic ✓

13 Implementation consistent with annotation and other info ✓

14 No hidden code about any logic that is not mentioned in
design

✓

15 No ambiguous logic ✓

16 No risk threatening the developing team ✓

17 No risk threatening exchanges, wallets, and DApps ✓

18 No risk threatening token holders ✓

19 No privilege on managing others' balances ✓

20 No non-essential minting method ✓

21 Correct managing hierarchy ✓

Risk Type Risk Level Impact Status

Implementation Medium Functional failure Fixed

4.3 Issues

4.3.1 The parameter UserInfo.sharesUserInfo.shares is not recorded and updated,
which directly results in the user not being able to retrieve the principal
and rewards.

Description

The parameter UserInfo.shares indicates the share of LP token deposited
by the user in this contract. It is used to calculate the principal deposited by the
user and the amount of rewards. The current code uses the parameter
_pool.totalShare to record the total shares deposited into the pool by all
users under the current contract. Still, the code for recording the share for a
single user is missing. It directly prevents users from receiving their principal
and earnings.

struct UserInfo {
 // The amount of shares the user deposited.
 uint128 shares;
 // The amount of current accrued rewards.
 uint128 rewards;
 // The reward per share already paid for the user, with
1e18 precision.
 uint256 rewardPerSharePaid;
 }

function deposit(uint256 _pid, uint256 _amount) public
override nonReentrant returns (uint256 share) {

af://n1086
af://n1087
af://n1099

 // 3. deposit
 _approve(_lpToken, BOOSTER, _amount);
 IConvexBooster(BOOSTER).deposit(_pool.convexPoolId,
_amount, true);

 uint256 _totalShare = _pool.totalShare;
 uint256 _totalUnderlying = _pool.totalUnderlying;
 uint256 _shares;
 if (_totalShare == 0) {
 _shares = _amount;
 } else {
 _shares = _amount.mul(_totalShare) / _totalUnderlying;
 }
 //@audit records the total share of lp tokens deposited by
all users
 _pool.totalShare = _toU128(_totalShare.add(_shares));
 _pool.totalUnderlying =
_toU128(_totalUnderlying.add(_amount));

 emit Deposit(_pid, msg.sender, _amount);
 return _shares;
 }

function withdrawAndClaim(
 uint256 _pid,
 uint256 _shares,
 uint256 _minOut,
 ClaimOption _option
) public override nonReentrant returns (uint256 withdrawn,
uint256 claimed) {
 require(_shares > 0, "AladdinConvexVault: zero share
withdraw");
 require(_pid < poolInfo.length, "AladdinConvexVault:
invalid pool");

Status

The team fixed this issue in commit 2fd0df7.

 // 2. withdraw lp token
 UserInfo storage _userInfo = userInfo[_pid][msg.sender];

 //@audit share of users not updated
 require(_shares <= _userInfo.shares, "AladdinConvexVault:
shares not enough");

 uint256 _totalShare = _pool.totalShare;
 uint256 _totalUnderlying = _pool.totalUnderlying;
 uint256 _withdrawable = _shares.mul(_totalUnderlying) /
_totalShare;
 {
 // take withdraw fee here
 uint256 _fee =
_withdrawable.mul(_pool.withdrawFeePercentage) /
FEE_DENOMINATOR;
 _withdrawable = _withdrawable - _fee; // never overflow
 }

 _pool.totalShare = _toU128(_totalShare - _shares);
 _pool.totalUnderlying = _toU128(_totalUnderlying -
_withdrawable);

 IConvexBasicRewards(_pool.crvRewards).withdraw(_withdrawable,
false);
 IERC20Upgradeable(_pool.lpToken).safeTransfer(msg.sender,
_withdrawable);
 emit Withdraw(_pid, msg.sender, _shares);

 }

af://n1102
https://github.com/AladdinDAO/aladdin-v3-contracts/commit/2fd0df7aa04ce5a97339a19e55e524b9835ba0bb

Risk Type Risk Level Impact Status

Design & Implementation Low Design logic Fixed

4.3.2 If the function _swapCRVToCvxCRV()_swapCRVToCvxCRV() returns an incorrect
value, the harvest()harvest() function may fail to execute.

Description

The function _swapCRVToCvxCRV() converts the CRV token under the
AladdinConvexVault contract to a cvxCRV token. This function provides
both Curve item and Convex item for converting CRV tokens to cvxCRV tokens.
The function _swapCRVToCvxCRV() calls the deposit() function under the
CrvDepositor contract when exchanging cvxCRV tokens using the Convex
protocol. When _lock == false, the caller will be compensated by a
percentage of the commission deducted to the other user who locked the
position for him. In this case, the caller will receive fewer cvxCRV tokens.

The function _swapCRVToCvxCRV() does not consider the fee charged by the
CrvDepositor contract when processing the amount of cvxCRV tokens
swapped using the Convex protocol. It results in the return value of the
function _swapCRVToCvxCRV() being larger than the actual received value.
These exchanged cvxCRV tokens would be transferred to the AladdinCRV
contract. It will directly result in the IAladdinCRV(_token).deposit()
function failing to execute due to insufficient funds.

//@audit loacted in AladdinConvexVault.sol
function harvest(
 uint256 _pid,
 address _recipient,
 uint256 _minimumOut
) external override nonReentrant returns (uint256 harvested)
{

 if (_amount > 0) {

af://n1104
af://n1116

 IZap(_zap).zap{ value: _amount }(WETH, _amount, CRV, 0);
 }
 _amount = IERC20Upgradeable(CRV).balanceOf(address(this));

 //@audit swap CRV token to cvxCRV token
 _amount = _swapCRVToCvxCRV(_amount, _minimumOut);

 _token = aladdinCRV; // gas saving
 _approve(CVXCRV, _token, _amount);

 //@audit this function may fail due to an insufficient
funds
 uint256 _rewards =
IAladdinCRV(_token).deposit(address(this), _amount);

 }

//@audit located in AladdinConvexVault.sol
function _swapCRVToCvxCRV(uint256 _amountIn, uint256 _minOut)
internal returns (uint256) {

 if (useCurve) {
 _approve(CRV, CURVE_CVXCRV_CRV_POOL, _amountIn);
 _amountOut =
ICurveFactoryPool(CURVE_CVXCRV_CRV_POOL).exchange(0, 1,
_amountIn, 0, address(this));
 } else {
 _approve(CRV, CRV_DEPOSITOR, _amountIn);
 IConvexCRVDepositor(CRV_DEPOSITOR).deposit(_amountIn,
false, address(0));

 //@audit take into account the handling fee,
 // the actual number of cvxCRV tokens redeemed by the
user
 // is less than the number of crv tokens.
 _amountOut = _amountIn;
 }

Risk Type Risk Level Impact Status

Implementation Medium Faulty logic Fixed

Status

The team has developed different logic for whether or not the convex protocol
charges a fee and fixed this issue in commit 2fd0df7.

4.3.3 The function _claim()_claim() will duplicate the reward when processing
aCRV token rewards.

Description

When a user chooses to claim with the option ClaimOption.Claim, he will
receive the corresponding aCRV token directly. However, the code does not exit
directly after the option == ClaimOption.Claim branch is executed, it
will continue with the next withdraw() operation. Since the parameter
_withdrawOption is only initialized, the enumeration type will default to
WithdrawOption.Withdraw at this point, and the caller will also be
rewarded with a cvxCRV token. It results in the caller being repeatedly
rewarded, which affects the other users' benefit.

 return _amountOut;
 }

//@audit located in IAladdinCRV.sol
enum WithdrawOption {
 Withdraw,
 WithdrawAndStake,
 WithdrawAsCRV,
 WithdrawAsCVX,
 WithdrawAsETH
 }

//@audit located in AladdinConvexVault.sol

af://n1120
https://github.com/AladdinDAO/aladdin-v3-contracts/commit/2fd0df7aa04ce5a97339a19e55e524b9835ba0bb
af://n1122
af://n1134

function _claim(
 uint256 _amount,
 uint256 _minOut,
 ClaimOption _option
) internal returns (uint256) {
 if (_amount == 0) return _amount;

 IAladdinCRV.WithdrawOption _withdrawOption;

 if (_option == ClaimOption.Claim) {
 require(_amount >= _minOut, "AladdinConvexVault:
insufficient output");
 IERC20Upgradeable(aladdinCRV).safeTransfer(msg.sender,
_amount);
 } else if (_option == ClaimOption.ClaimAsCvxCRV) {

 }

 return IAladdinCRV(aladdinCRV).withdraw(msg.sender,
_amount, _minOut, _withdrawOption);
 }

//@audit located in AladdinCRV.sol
function withdraw(
 address _recipient,
 uint256 _shares,
 uint256 _minimumOut,
 WithdrawOption _option
) public override nonReentrant returns (uint256 withdrawn) {
 uint256 _withdrawed = _withdraw(_shares);

 //@audit this branch will be executed
 if (_option == WithdrawOption.Withdraw) {
 require(_withdrawed >= _minimumOut, "AladdinCRV:
insufficient output");
 IERC20Upgradeable(CVXCRV).safeTransfer(_recipient,
_withdrawed);
 } else {

Suggestion

Add the missing return() statement directly after retrieving the aCRV token
reward to terminate this function.

Status

The development team has fixed this issue in commit 2fd0df7.

 }

 emit Withdraw(msg.sender, _recipient, _shares, _option);
 return _withdrawed;
 }

function _claim(
 uint256 _amount,
 uint256 _minOut,
 ClaimOption _option
) internal returns (uint256) {
 if (_amount == 0) return _amount;

 IAladdinCRV.WithdrawOption _withdrawOption;
 if (_option == ClaimOption.Claim) {
 require(_amount >= _minOut, "AladdinConvexVault:
insufficient output");
 IERC20Upgradeable(aladdinCRV).safeTransfer(msg.sender,
_amount);

 //@audit add the followed code
 return _amount;
 } else if (_option == ClaimOption.ClaimAsCvxCRV) {

 }

af://n1137
af://n1140
https://github.com/AladdinDAO/aladdin-v3-contracts/commit/2fd0df7aa04ce5a97339a19e55e524b9835ba0bb

Risk Type Risk Level Impact Status

Design & Implementation Low Design logic Fixed

4.3.4 It may fail for the user to call the depositWithCRV()depositWithCRV() function
to deposit the CRV token.

Description

The function depositWithCRV() converts the CRV token deposited by the
user into a cvxCRV token stored in the convex protocol. When converting CRV
tokens to cvxCRV tokens using the _zapToken() function, both Curve and
Convex routes are provided. When converting cvxCRV tokens using the Convex
route, as discussed in issue 4.3.2, the number of cvxCRV tokens obtained may
be less than the number of CRV tokens transferred. The function _deposit()
will fail to execute due to insufficient funds.

//@audit located in AladdinCRV.sol
function depositWithCRV(address _recipient, uint256 _amount)
public override nonReentrant returns (uint256 share) {
 uint256 _before =
IERC20Upgradeable(CRV).balanceOf(address(this));
 IERC20Upgradeable(CRV).safeTransferFrom(msg.sender,
address(this), _amount);
 _amount =
IERC20Upgradeable(CRV).balanceOf(address(this)).sub(_before);

 //@audit swap CRV token to cvxCRV token
 _amount = _zapToken(_amount, CRV, _amount, CVXCRV);

 //@audit it may fail
 return _deposit(_recipient, _amount);
 }

//@audit located in AladdinCRV.sol
function _zapToken(

af://n1142
af://n1154

 uint256 _amount,
 address _fromToken,
 uint256 _minimumOut,
 address _toToken
) internal returns (uint256) {
 // @audit call AladdinCRVZap.zap() function
 (bool success, bytes memory data) = zap.delegatecall(

 abi.encodeWithSignature("zap(address,uint256,address,uint256)
", _fromToken, _amount, _toToken, _minimumOut)
);
 require(success, "AladdinCRV: zap failed");
 return abi.decode(data, (uint256));
 }

//@audit located in AladdinCRVZap.sol
function zap(
 address _fromToken,
 uint256 _amountIn,
 address _toToken,
 uint256 _minOut
) external payable override returns (uint256) {
 if (_fromToken == THREE_CRV && _toToken == address(0)) {

 } else if (_fromToken == CRV && _toToken == CVXCRV) {
 // CRV => CVXCRV
 return _swapCRVToCvxCRV(_amountIn, _minOut);
 } else {
 revert("AladdinCRVZap: token pair not supported");
 }
 }

//@audit located in AladdinCRVZap.sol
function _swapCRVToCvxCRV(uint256 _amountIn, uint256 _minOut)
internal returns (uint256) {

 if (useCurve) {

Risk Type Risk Level Impact Status

Design & Implementation Info Design logic Discussed

Status

The team has developed different logic for whether or not the convex protocol
charges a fee and fixed this issue in commit 2fd0df7.

4.3.5 Potential loss of profits in aladdinConvexVaultaladdinConvexVault contract.

Description

A front-running/MEV bot could first deposit a large amount of LP token into the
contract via the deposit() function, then execute harvest() to update the
rewards, and finally execute withdrawAndClaim() to take the principal and
most of the new rewards. If the rewards are large enough, the attacker may
make a profit with the help of a flash loan.

Status

This issue has been discussed. As long as a valid incentive exists for the caller
invoking harvest, then the rewards to be distributed will be harvested before it
is worthwhile to implement a front-running attack. Considering the reward rate
of pools on Convex and the cost of implementing an attack, we believe that this
risk is low in the current case.

 } else {
 _approve(CRV, CRV_DEPOSITOR, _amountIn);
 IConvexCRVDepositor(CRV_DEPOSITOR).deposit(_amountIn,
false, address(0));
 _amountOut = _amountIn;
 }
 return _amountOut;
 }

af://n1157
https://github.com/AladdinDAO/aladdin-v3-contracts/commit/2fd0df7aa04ce5a97339a19e55e524b9835ba0bb
af://n1159
af://n1171
af://n1173

Risk Type Risk Level Impact Status

Implementation Info Missing important event Fixed

Risk Type Risk Level Impact Status

Implementation Low Functional failure Fixed

4.3.6 Adding missing event to the harvest()harvest() function in
AladdinConvexVault.

Description

Events are an essential part of the smart contract and are mainly used to record
essential runtime states. Any user can call the harvest() function to retrieve
the earnings from the Convex protocol. It is recommended to add events to
record the caller and the number of cvxCRV tokens retrieved to make it easier
for external programs to index and analyze.

The AladdinCRV contract currently includes a harvest event, but the
AladdinConvexVault contract does not.

Status

Fixed in commit dcf4b61.

4.3.7 Using the transfer function to send ether may fail.

Description

When the user chooses to retrieve them in the form of ether, the
withdrawAndZap() function converts a user's assets to ether and sends them
to that user via the transfer() function. However, using the transfer()
function to send ether to an unknown address may fail due to some reasons.
For example, when the receiving address is a proxy contract, sending ether to

af://n1175
af://n1187
af://n1190
https://github.com/AladdinDAO/aladdin-v3-contracts/commit/dcf4b61a4087511c93c1d0c51893431e310b47a9
af://n1192
af://n1204

that address using the transfer() function will fail due to gas limits. Read
this article for more details. Users may need special procedures to receive ETH
properly in this case.

Currently, all accounts can deposit into the protocol, so there may be cases
where users deposit using smart wallets or multi-signature contracts. It is
recommended to use call instead of transfer here to avoid functional failure.

Status

Fixed in commit dcf4b61.

https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/
af://n1207
https://github.com/AladdinDAO/aladdin-v3-contracts/commit/dcf4b61a4087511c93c1d0c51893431e310b47a9

5. Conclusion

After auditing and analyzing the Concentrator contract, SECBIT Labs found
some issues to optimize and proposed corresponding suggestions, which have
been shown above.

af://n1210

Disclaimer

SECBIT smart contract audit service assesses the contract's correctness,
security, and performability in code quality, logic design, and potential risks.
The report is provided "as is", without any warranties about the code
practicability, business model, management system's applicability, and
anything related to the contract adaptation. This audit report is not to be taken
as an endorsement of the platform, team, company, or investment.

af://n1213

Level Description

High Severely damage the contract's integrity and allow attackers to steal
ethers and tokens, or lock assets inside the contract.

Medium Damage contract's security under given conditions and cause
impairment of benefit for stakeholders.

Low Cause no actual impairment to contract.

Info Relevant to practice or rationality of the smart contract, could possibly
bring risks.

APPENDIX

Vulnerability/Risk Level Classification

af://n1216
af://n1217

 SECBIT Lab is devoted to constructing a common-consensus, reliable,
and ordered blockchain economic entity.

https://secbit.io

audit@secbit.io

@secbit_io

af://n1236
af://n1240
https://secbit.io/
mailto:audit@secbit.io
https://twitter.com/secbit_io

